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Abstract

The theoretical models for the viscosity of concentrated emulsions are reviewed. All models predict that the relative viscosity of an
emulsion, at low capillary numbers, is a function of dispersed-phase volume fraction and viscosity ratio (ratio of dispersed-phase viscosity to
continuous-phase viscosity). The predicted values of relative viscosity from different theoretical models are compared with a large amount
of experimental data. The cell model of Yaron and Gal-Or [Rheol. Acta 11 (1972) 241] predicts the relative viscosities of emulsions
reasonably well over a wide range of dispersed-phase volume fraction and viscosity ratio. The cell model of Choi and Schowalter [Phys.
Fluids 18 (1975) 420] overpredicts the relative viscosities, especially at high values of dispersed-phase volume fraction. The Phan-Thien
and Pham model [J. Non-Newtonian Fluid Mech. 72 (1997) 305] underpredicts the relative viscosities of emulsions at high values of
dispersed-phase volume fraction. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

An emulsion is a two-phase oil/water system where one
of the phases is dispersed as droplets in the other. Emul-
sions also contain a third component, called the emulsify-
ing agent or emulsifier, which has two principal functions:
(1) to decrease the interfacial tension between oil and wa-
ter, thereby enabling easier formation of the emulsion; (2) to
stabilize the dispersed phase against coalescence once it is
formed. Emulsions could be either oil-in-water (O/W) type
or water-in-oil (W/O) type. In the former case, oil is the dis-
persed phase and in the latter case, water is the dispersed
phase.

Emulsions play an important role in a number of industrial
and household applications [1–4]. The use of such systems
covers a broad field, ranging from lubrication and cooling
of equipment in metal working processes to more delicate
use as cosmetics. Emulsions are also encountered at nearly
every step of the petroleum production and recovery oper-
ations, viz. within the underground porous media, at well
heads, in phase separators, in flotation units, in crude oil
transport facilities, and at various stages of the refining pro-
cess [5]. Emulsions are of considerable importance in food
applications as well [6].
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In most of the applications just mentioned, the viscous
properties of emulsions are of paramount importance. In
particular, it is important to be able to predict the viscos-
ity of the emulsion as a function of the dispersed-phase
concentration. In the published literature, a large number
of empirical viscosity equations containing one or more
adjustable parameters have been proposed [7] for con-
centrated emulsions. Most of these empirical equations,
however, are unreliable beyond the original data upon
which they are based. Several authors [8–13] have also
developed theoretical equations for the viscosity of dilute
and concentrated emulsions. Unfortunately, these theoreti-
cal equations have received little attention in the literature
despite their obvious advantages, such as: they contain no
adjustable parameters and they provide better insight into
the mechanisms governing the rheological behaviour of
emulsions.

The objectives of this work are:
1. to briefly review various theoretical models for the

viscosity of dilute and concentrated emulsions;
2. to compare the predictions of various theoretical models;

and finally
3. to evaluate the models with a large amount of experimen-

tal data.
Note that the experimental evaluation of theoretical

viscosity models for emulsions is lacking in the published
literature.
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2. Theoretical background

A dispersion (emulsion or a suspension) can be treated
as a homogeneous system and average quantities (velocity,
velocity gradient, stress, rate of strain, etc.) can be defined
if there exists a characteristic volume,1V, large enough to
contain many particles (such that the statistical properties of
the dispersion do not vary over1V) but much smaller than
the flow scale [14] (see Fig. 1 for the schematic representa-
tion of a dispersion).

For a given set of macroscopic boundary conditions, there
are many possible configurations of the dispersion [15]. A
large number of such configurations make up an ensemble.
An ensemble average of any quantity is defined as the aver-
age taken over the various values occurring in these config-
urations. If the dispersion is statistically homogeneous, an
ensemble average at any pointx̂ is identical with the vol-
ume average over a region aboutx̂, of characteristic volume
1V, for one realization [15].

Therefore, an average velocity gradient or similarly, an
average rate of strain tensor in dispersions may be defined as

〈∇û〉 = 1

1V

∫
1V

(∇û) dV (1)

〈 ¯̄d〉 = 1

2
[〈∇û〉 + 〈(∇û)T〉] = 1

1V

∫
1V

( ¯̄d) dV (2)

The average stress tensor in the dispersion is similarly
defined by

〈 ¯̄π〉 = 1

1V

∫
1V

( ¯̄π) dV (3)

provided that the effects of inertia in the dispersion are
negligible [16,17].

Fig. 1. A schematic representation of a dispersion.1V is the characteristic
volume, large enough to contain many particles, but much smaller than
the flow scale.d is the spacing between the particles,D the particle
diameter, and̂n a unit vector normal to the particle surface.

The integral in Eq. (3) can be broken up into integrals over
the volume occupied by the continuous-phase fluid,1Vc,
and by the dispersed phase,1Vd, to yield

〈 ¯̄π〉 = 1

1V

∫
1Vc

( ¯̄π) dV + 1

1V

∫
1Vd

( ¯̄π) dV (4)

Since

¯̄π = −p ¯̄δ + 2ηc
¯̄d (5)

for the continuous phase, Eq. (4) becomes

〈 ¯̄π〉 = 1

1V

∫
1Vc

{−p ¯̄δ + 2ηc
¯̄d} dV + 1

1V

∫
1Vd

( ¯̄π) dV (6)

wherep is the pressure andηc the continuous-phase viscos-
ity. From Eq. (6), the average stress tensor can be rewritten
as [14,15]

〈 ¯̄π〉 = −p ¯̄δ + 2ηc〈 ¯̄d〉 + 1

1V

N∑
i=1

¯̄Si (7)

whereN is the number of particles in the volume1V, and

Si the “dipole strength” of particlei, given by

¯̄Si =
∫

Ai

[r̂ ¯̄π · n̂ − 1
3
¯̄δr̂ · ¯̄π · n̂ − ηc(ûn̂ + n̂û)] dA (8)

The above integration is carried out over the surfaceAi of
the particlei. Note thatr̂ is a vector to the surface of the
particle from the centre of the particle,n̂ is a unit vector
normal to the particle surface, and¯̄δ is a unit tensor. The

term (1/1V )
∑N

i=1
¯̄Si in Eq. (7) can be interpreted as an

extra stress tensor which represents the contribution to the
average stress tensor due to the presence of the particles.
The summation in this term over a large number (N) of
identical particles in the volume1V is equivalent toN times

an ensemble average of¯̄S, i.e.,

1

1V

N∑
i=1

¯̄Si = n〈 ¯̄S〉 (9)

wheren is the number density of particles (n=N/1V).
In the case of verydilutedispersions where there are very

few particles present that they are far apart (and therefore,
do not interact with each other), each particle behaves as if
it were immersed in an infinite fluid subjected to bulk flow.
In such situations

1

1V

N∑
i=1

¯̄Si = n ¯̄S (10)

where ¯̄S is the dipole strength of a single particle alone in
an infinite fluid in which the rate of strain tensor far from
the particle is〈 ¯̄d〉. Batchelor and Green [15] have shown that
for very dilute dispersions

¯̄S = 20

3
πR3

[
5κ + 2

5(κ + 1)

]
ηc〈 ¯̄d〉 (11)
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whereR is the particle radius, andκ the viscosity ratio of
the dispersed phase to continuous phase. From Eqs. (10) and
(11)

1

1V

N∑
i=1

¯̄Si = 20

3
nπR3

[
5κ + 2

5(κ + 1)

]
ηc〈 ¯̄d〉 (12)

1

1V

N∑
i=1

¯̄Si = 5

[
5κ + 2

5(κ + 1)

]
ηcφ〈 ¯̄d〉 (13)

whereφ is the volume fraction of the dispersed phase. There-
fore, the average stress tensor for very dilute dispersion of
spherical particles is given by

〈 ¯̄π〉 = −p ¯̄δ + 2ηc〈 ¯̄d〉 + 5

[
5κ + 2

5(κ + 1)

]
ηcφ〈 ¯̄d〉 (14)

The macroscopic or average stress tensor for the dispersion
could also be written as

〈 ¯̄π〉 = −p ¯̄δ + 2η〈 ¯̄d〉 (15)

whereη is the effective viscosity of the dispersion. Upon
comparing Eqs. (14) and (15), one obtains

ηr = η

ηc
= 1 +

[
5κ + 2

2(κ + 1)

]
φ (16)

whereηr is the relative viscosity of the dispersion. Eq. (16)
is the celebrated Taylor relation [8] for the relative viscosity
of a very dilute emulsion.

The relative viscosity behaviour of dilute emulsions can
be described by the Taylor relation (Eq. (16)) only if the
emulsion droplets are spherical. Under a steady macroscopic
flow, the droplets of emulsions are subjected to two opposing
effects: (i) a viscous stress of magnitudeηcγ̇ that tends to
elongate the droplet, and (ii) a stress of magnitudeσ /R that
tends to minimize the surface energy and hence tends to
maintain the droplet in a spherical shape. Therefore, the
equilibrium shape of the droplet is governed by the ratio of
viscous stress toσ /R; this ratio is referred to as capillary
number (NCa):

NCa = ηcγ̇

σ/R
(17)

whereγ̇ is the shear rate, andσ the interfacial tension. When
the capillary number is small (NCa→0), the deformation of
the droplets is negligible and the droplets can be treated as
spherical. However, at high capillary numbers, the deforma-
tion of droplets from spherical shape can be quite significant.
Therefore, the Taylor equation (Eq. (16)) is valid only under
the condition that the capillary number is small (NCa→0).

In the derivation of Taylor equation (Eq. (16)), the inter-
action between neighbouring drops (spherical) is neglected
as the emulsion is very dilute. However, at finite concen-
trations of dispersed phase, the hydrodynamic interaction
between droplets is significant. To take into account the hy-
drodynamic interaction between the neighbouring droplets,

Choi and Schowalter [11] and Yaron and Gal-Or [12] used
a cell model approach. Their analysis leads to the following
macroscopic stress tensor for emulsions whenNCa→0:

〈 ¯̄π〉 = −p ¯̄δ + 2ηc[1 + I (λ)φ]〈 ¯̄d〉 (18)

whereλ is φ1/3 and I(λ) is given by Choi–Schowalter [11]
(Eq. (19)) and Yaron and Gal-Or [12] (Eq. (20)):

I (λ) = 2[(5κ + 2) − 5(κ − 1)λ7]

[4(κ + 1) − 5(5κ + 2)λ3 + 42κλ5

−5(5κ − 2)λ7 + 4(κ − 1)λ10]

(19)

I (λ) = 5.5[4λ7 + 10− (84
11)λ

2 + (4/κ)(1 − λ7)]

10(1 − λ10) − 25λ3(1 − λ4)

+(10/κ)(1 − λ3)(1 − λ7)

(20)

From Eqs. (15) and (18), it follows that

ηr = 1 + I (λ)φ (21)

Phan-Thien and Pham [13] have recently developed an-
other viscosity equation for concentrated emulsions using
the effective medium approach. Starting from the Tay-
lor equation (Eq. (16)) and using the concept of effective
medium, they developed the following differential equation
for the viscosity of concentrated emulsions at low capillary
numbers (NCa→0):

dη

dφ
= 1

1 − φ

[
η + (5

2)ηd

η + ηd

]
η (22)

whereηd is the dispersed-phase viscosity. The above differ-
ential equation can be solved by subjecting it to the follow-
ing boundary condition:

at φ = 0, η = ηc (23)

The solution of Eq. (22) subjected to the boundary condition
of Eq. (23) is as follows:(

η

ηc

)2/5 [
2η + 5ηd

2ηc + 5ηd

]3/5

= (1 − φ)−1 (24)

This solution can be rewritten in terms of the relative vis-
cosity (ηr) and the viscosity ratio (κ) as follows:

η
2/5
r

[
2ηr + 5κ

2 + 5κ

]3/5

= (1 − φ)−1 (25)

It should be noted that all the theoretical equations for
emulsion viscosity (Eqs. (16), (21) and (25)) predict that the
relative viscosity of an emulsion at low capillary numbers
(NCa→0) is a function of the viscosity ratioκ (=ηd/ηc) and
dispersed-phase volume fractionφ.

3. Predictions of theoretical models

Figs. 2–4 show the relative viscosities predicted from the
models of Choi and Schowalter (Eqs. (19) and (21)), Yaron
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Fig. 2. Relative viscosities predicted by the Choi and Schowalter model.

Fig. 3. Relative viscosities predicted by the Yaron and Gal-Or model.

Fig. 4. Relative viscosities predicted by the Phan-Thien and Pham model.

and Gal-Or (Eqs. (20) and (21)), and Phan-Thien and Pham
(Eq. (25)). All the three models predict that the relative vis-
cosity at any given value of viscosity ratioκ increases with
the increase in dispersed-phase volume fractionφ. Also, as
φ→1.0, the relative viscosity becomes infinite. At a fixed
value of φ, the relative viscosity initially remains nearly
constant with the increase in viscosity ratioκ. In the range
10−2<κ<100, the relative viscosity increases with the in-
crease inκ. At higher values ofκ (κ>100), the relative vis-
cosity again becomes nearly constant, independent ofκ.

Fig. 5 shows comparison between the predictions of vari-
ous theoretical models at different values ofφ. Forφ<0.30,
the Yaron and Gal-Or model predicts relative viscosities
higher than those predicted by the Choi and Schowalter
and Phan-Thien and Pham models over the full range ofκ.
The Phan-Thien and Pham model predicts the lowest values
whereas the predictions of Choi and Schowalter model fall
in between those of Yaron and Gal-Or and Phan-Thien and
Pham models. Atφ=0.30, the Yaron and Gal-Or and Choi
and Schowalter models predict similar relative viscosities
(Choi and Schowalter model predicts slightly higher val-
ues at high values ofκ). The Phan-Thien and Pham model
predicts much lower values of relative viscosity over the
full κ range. Whenφ>0.30, the Choi and Schowalter model
overtakes the Yaron and Gal-Or model and predicts the
highest viscosities over the fullκ range. The predictions
from the Yaron and Gal-Or model fall in between those of
Choi and Schowalter and Phan-Thien and Pham models at
high values ofφ.
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Fig. 5. Comparison between the predictions of various theoretical models
at different values of dispersed-phase volume fraction (φ).

4. Comparison of theoretical models with experimental
data

Two sets of literature data and 17 sets of data from our
work on emulsions are considered to evaluate the theoreti-
cal viscosity models. These data were selected on the basis

Table 1
Summary of various emulsion systems considered in the present work

Set
No.

Type of
emulsions

Range of
φ

Viscosity
ratio (κ)

Reference
number

Comments

1 O/W 0.165–0.516 5.52 [18] Emulsions for sets 1–4 were prepared from the same oil and aqueous
2 O/W 0.195–0.349 5.52 [18] phase. However, the Sauter mean diameter was different for different
3 O/W 0.226–0.553 5.52 [18] sets: set 1–21.4mm, set 2–9.12mm, set 3–8.1mm, set 4–4.6mm
4 O/W 0.219–0.543 5.52 [18]
5 O/W 0.296–0.635 1170 Unpublished data Heavy oil-in-water emulsions
6 O/W 0.10–0.60 4.15×10−3 [19] Polymer-thickened emulsions
7 O/W 0.10–0.60 1.12×10−2 [19] Polymer-thickened emulsions
8 O/W 0.155–0.60 5.82×10−2 [20] Polymer-thickened emulsions
9 O/W 0.165–0.55 1 2.57 [21] Mineral oil emulsions

10 O/W 0.50 3.87×10−4 [22] Polymer-thickened emulsions
11 O/W 0.50 5.82×10−2–1.95 [20] Polymer-thickened emulsions
12 O/W 0.50 60.85 [23] Mineral oil emulsion
13 O/W 0.50 1106.4 Unpublished data Mineral oil emulsion
14 O/W 0.50 3.25×105 Unpublished data Bitumen-in-water emulsion
15 W/O 0.50 0.153 [24] Petroleum oil emulsion
16 W/O 0.50 0.447 [21] Oil phase consisted of a mixture of CCl4 and refined mineral oil
17 O/W 0.50 256.8 [21] Lubricating oil emulsion
18 O/W 0.50 1.7–64.2 [25] Limpid and viscous paraffin emulsions
19 O/W 0.50 0.834–123.1 [26] Emulsions were prepared from three different oils: nujol, benzene

and olive oil. The aqueous phase consisted of either sodium oleate
or saponin

of the following criteria: (a) the capillary number is small
(NCa→0), and (b) the emulsions are de-flocculated. It should
be noted that the theoretical models discussed in the pre-
ceding section are valid for de-flocculated emulsions at low
capillary numbers. Table 1 gives further details on the vari-
ous emulsion systems considered in the present work.

Figs. 6 and 7 show comparisons between the experi-
mental data and theoretical predictions for different values
of the viscosity ratioκ. At low values ofφ (φ≤0.20), the
experimental data generally follow the Phan-Thien and
Pham model (Eq. (25)) more closely. At higher values ofφ,
the experimental data follow the Yaron and Gal-Or model
(Eqs. (20) and (21)) more closely. The Choi and Schowalter
model (Eqs. (19) and (21)) overpredicts the relative viscosi-
ties especially atφ values greater than about 0.20. Overall,
the best model is the Yaron and Gal-Or model; it gives
reasonable predictions of relative viscosities at different
values ofκ andφ. It is interesting to note that the relative
viscosity of de-flocculated emulsions at low capillary num-
bers (NCa→0) is independent of the droplet size; none of
the theoretical models discussed here involve the droplet
size. Experimental evidence for the droplet size indepen-
dence of relative viscosity is shown in Fig. 7a. Emulsions
having different Sauter mean diameters (set 1–21.4mm, set
2–9.12mm, set 3–8.1mm, and set 4–4.6mm) exhibit nearly
the same relative viscosities.

In Fig. 8, the experimental relative viscosity data are com-
pared with the predictions of the theoretical models at a fixed
value ofφ, i.e.,φ=0.50. A wide range of viscosity ratioκ is
covered (10−4<κ<106). For κ≤10, the experimental data
follow the Yaron and Gal-Or model quite well. Whenκ>10,
the experimental relative viscosities fall somewhat below
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Fig. 6. Comparisons between the experimental data and theoretical pre-
dictions for different values of the viscosity ratio (κ).

the predictions of the Yaron and Gal-Or model although
the deviation is not large. The Choi and Schowalter model
overpredicts the relative viscosities whereas the Phan-Thien
and Pham model underpredicts the relative viscosities over
the full range ofκ values. Thus, it can be concluded that the
Yaron and Gal-Or model represents the experimental data
more accurately as compared with the other two theoretical
models.

Fig. 9 shows a parity plot of the relative viscosities
predicted by Yaron and Gal-Or model and those obtained
experimentally. The data include all 19 sets (see Table 1).

Fig. 7. Comparisons between the experimental data and theoretical pre-
dictions. Note that Fig. 7a shows the relative viscosity data of emulsions
having different average droplet sizes. The Sauter mean diameter of the
four sets of data shown in Fig. 7a are as follows: set 1–21.4mm, set
2–9.12mm, set 3–8.1mm, and set 4–4.6mm.

Fig. 8. Comparison between the experimental data and theoretical pre-
dictions at a fixed dispersed-phase volume fraction (φ) of 0.50.

Fig. 9. Parity plot: Yaron and Gal-Or model prediction versus experimental
values of relative viscosities.

A fairly good agreement is obtained between the predicted
and the experimental values.

5. Conclusions

Based on the review and analysis of theoretical models
presented in the paper, the following conclusions can be
made:
• At low capillary numbers (NCa→0), the relative vis-

cosity of de-flocculated emulsions depends only on the
dispersed-phase volume fraction (φ) and viscosity ratio
(κ).

• At a fixed value ofφ, the relative viscosity initially
remains nearly constant when the viscosity ratioκ is in-
creased. In the range 10−2<κ<100, the relative viscosity
increases with the increase inκ. Whenκ>100, the relative
viscosity again becomes constant, independent ofκ.
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• Overall, the best model for the viscosity of concentrated
emulsions is the cell model of Yaron and Gal-Or [12]; it
gives reasonable predictions of relative viscosity over a
wide range ofφ andκ. The Phan-Thien and Pham model
[13] gives good predictions of relative viscosity only at
low values ofφ. At high values ofφ, the Phan-Thien and
Pham model underpredicts the relative viscosities whereas
the Choi and Schowalter model [11] overpredicts the rel-
ative viscosity.
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